Answer:
0.2 pounds of shrimp cost $1.65
Step-by-step explanation:
0.2 * 5 = 1 lb
so
8.25 / 5 = $1.65
what is the simplified form of the following expression 2x^2y 3x^2 4y 3x^2y 2y
Answer:
\(8x^6y^9\)
Step-by-step explanation:
Multiply the numbers
\(2x^2y^3x^2\) · \(4y^3x^2y^2y\)
\(8x^2y^3x^2y^3x^2x^2y\)
Combine exponents
\(8x^2y^3x^2y^3x^2x^2y\)
\(8x^2y^9x^2x^2\)
Combine exponents
\(8x^2y^9x^2x^2\)
\(8x^6y^9\)
Solution
\(8x^6y^9\)
joe scored in the 20th percentile on a standardized test. he brags to his friends that he scored better than 80% of the people who took the test. joe is .
Joe is incorrect in claiming that he scored better than 80% of the people who took the test.
The 20th percentile means that Joe's score was equal to or greater than 20% of the other test takers, but lower than 80%. The percentile is not a percentage, so the statement Joe made is false.
It is important to understand that percentile rankings are not the same as percentages. Percentile rankings measure how one’s score compares to others who have taken the same test. For example, if Joe scored in the 20th percentile, it means that 20% of the other test takers had the same or lower scores. On the other hand, percentages measure a proportion of the whole. In Joe's case, 80% would mean that 80 out of 100 test takers had a higher score than Joe.
To be more accurate, Joe could have said that he scored better than 20% of the people who took the test. Percentile rankings are often used to measure an individual's performance in comparison to a larger group of peers. Although Joe might have performed well, it is important to understand the difference between percentile and percentage.
See more about percentile at: https://brainly.com/question/27903388
#SPJ11
PLEASEEE I NEED MORE ANSWERS
Answer:
3 loaves of bread
Step-by-step explanation:
2/3*3=6/3= 2 cups of oil
Write an equation of the line that passes through (0, 3) and (−5, 2.5)
Answer:
y=.1x+3 I think that is the answer
Answer:
y=0.1x+3
Step-by-step explanation:
The slope is 0.1, (Y2-Y1/X2-X1) --> (2.5-3)/(-5-0)= -0.5/-5=0.1
The y-intercept is 3
y=0.1x+3
Find P(A) given that P(A) = 0.75
Answer:
P(A)=0.75
Step-by-step explanation:
I think you already have your answer. If this is all the information given in the problem, there is nothing more to do.
Find the measure of the angle
Answer:
27
Step-by-step explanation:
The triangle shown is an isoceles triangle. This means that there are two congruent base angles and a vertex angle. In this case, angle X and angle Y are the base angles, so we can set up an equation to first find the value of t.
5t - 13 = 3t + 3
2t - 13 = 3 (Subtract 3t from both sides)
2t = 16 (Add 13 to both sides)
t = 8 (Divide both sides by 2)
Now that we have the value of t, we can plug it back in to the expression for angle X to find its measure.
5(8) - 13
40 - 13
27
So, the measure of angle X is 27
Alex can run 9 miles in 3 minutes x I need the equation and constant of porportionality
Answer:
k=9/3= 3
Step-by-step explanation:
Mark me the brainliest please
2a) Determine the unknown angle x.
The unknown angle x in the triangle is 80 degrees
How to determine the unknown angle x.From the question, we have the following parameters that can be used in our computation:
The triangle
The unknown angle x is calculated using the sum of angles in a triangle theorem
So, we have
x + 60 + 40 = 180
Evaluate the like terms
x + 100 = 180
So, we have
x = 80
Hence, the unknown angle x is 80 degrees
Read more about angles at
https://brainly.com/question/31898235
#SPJ1
30 in.
10 in.
10 in.
30 in
20 in
Find the area of the arrow above.
square inches
Answer:
1100 Inches Squared
Step-by-step explanation:
Let the triangle on the top right be - (i)
Let the triangle on the top left be - (ii)
Let the bottom rectangle be - (iii)
1) The base of the triangle (i) = 10 + (20/2) (It is the base of the rectangle halfed + the given amount of half base of the triangle)
=> 10 + 10
=> 20 in
Base = 20 in
Height = 30 in
Area = 1/2 * 20 * 30
=> 10 * 30
=> 300 in
Triangle (i) = (ii)
So, the area of triangle (ii)
=> 300 in
Area of rectangle,
Length * Breadth
=> 20 * 30
=> 500 in
Total arrow's area = 300 + 300 + 500 (i + ii + iii)
=> 1100
Therefore the total area of the shape = 1100 in squared.
Hope it helps :)
Find 100% when 12 is 10%
Answer:
I think it's 120??
Step-by-step explanation:
10 x 10 = 100
12 x 10 = 100
Answer:
if 10%=12
then
1%=12/10
or,1%=1.2
then, for 100%
100%=1.2*100
hence, 100%=120...
suppose the probability of having blood type a is 0.4. choose 4 people at random and let x be the number of them with blood type a. what is the chance that nobody has type blood a?
The probability of having blood type a is 0.4, and the chance that nobody has blood type A is 0.1296, or about 12.96%.
The probability of having blood type a is 0.4.
Let x be the number of them with blood type a.
Choose 4 people at random.
The number of people with blood type a can be 0, 1, 2, 3, or 4. These are the possible values of X. If there are 4 people with blood type a, then nobody does have blood type a. Otherwise if X is less than 4, then at least one person does not have blood type a. It means we want to find P(X = 0).
X is a binomial random variable with parameters n = 4 and p = 0.4.
The probability mass function of X is given by:
P(X = x) = (n C x) * (p)^x * (1-p)^(n-x)
Now, for P(X = 0), let x = 0, n = 4, and p = 0.4.
P(X = 0) = (n C x) * (p)^x * (1-p)^(n-x)
⇒ (4 C 0) * (0.4)^0 * (0.6)^(4-0)
⇒ 0.1296
Therefore, the chance that nobody has blood type a is 0.1296.
To know more about the "probability": https://brainly.com/question/13604758.
#SPJ11
passes through (-6,2) and is parallel to the line whose equation is 2x-3y=12
\(Answer:\large\boxed{y=\frac{2}{3} x+6}\)
Step-by-step explanation:
First let's convert 2x - 3y = 12 into \(y = mx + b\) form.
In order to do this, solve for y.
\(2x-3y=12\)
\(-3y=-2x+12\)
\(y=\frac{2}{3} x-4\)
This shows us that the slope is \(\boxed{\frac{2}{3}}\)
Now we use the point-slope formula:
\((y-y1)=m(x-x1)\)
where m is the slope and y1 and x1 are the point the line passes through
Using the point (-6,2) and slope, 2/3, we can find the equation:
\((y-2)=\frac{2}{3} (x-(-6))\)
\((y-2)=\frac{2}{3} (x+6)\)
\((y-2)=\frac{2}{3} x+4\)
\(\large\boxed{y=\frac{2}{3} x+6}\)
the square root of 31 is between which two numbers !!! ILL GIVE YOUU A BRANLIESTTT!!
Answer:
The square root of 31 is 5.5 (not including numbers after that, just those two work) therefore it's in between the two numbers of 5 and 6.
Answer:
5.56776436283
Step-by-step explanation:
i googled it
observations of shoplifters in pueblo, colorado, characterized as "72 percent men and 28 percent women, with an average age of 15.4 years" constitutes which type of analysis?
The observations of shoplifters in Pueblo, Colorado, characterized as "72 percent men and 28 percent women, with an average age of 15.4 years" constitutes the type of Analysis called as Descriptive Analysis.
The Descriptive analysis is a type of statistical analysis which involves the summarizing and describing main features of a set of data. This type of analysis is used to provide a general picture of the data and to highlight patterns and relationships in the data.
the data "72 percent men and 28 percent women, with an average age of 15.4 years" describes the gender and age distribution of shoplifters in Pueblo, Colorado. The data provides information on the percentage of men and women who are shoplifters, and the average age of shoplifters in the area. This information can be used to describe the characteristics of shoplifters in Pueblo, Colorado.
Learn more about Analysis here
https://brainly.com/question/29764355
#SPJ4
PLEASE HELP ME? I have no idea what to do?
Answer:
multiply t from both sides by t, then divide both sides by s.
it should be txy/s = r
Answer:
r = \(\frac{txy}{s}\)
Step-by-step explanation:
multiply both sides by t
txy = rs
flip the equation
rs = txy
divide both sides by s
\(\frac{rs}{s}\) = \(\frac{txy}{s}\)
r = \(\frac{txy}{s}\)
I'm more sophisticated than my little sister. I save my money in a bank account that pays me 3% interest on the money in the account at the end of each month. (If I take my money out before the end of the month, I don't earn any interest for the month.) I started the account with $50 that I got for my birthday. How much money will I have in the account at the end of 10 months? How many months will it take to have at least $100? Justify your answer with a mathematical model of the problem situation.
\(~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\$50\\ r=rate\to 3\%\to \frac{3}{100}\dotfill &0.03\\ n= \begin{array}{llll} \textit{times it compounds per \underline{month}} \end{array}\dotfill &1\\ t=\underline{months}\dotfill &10 \end{cases} \\\\\\ A=50\left(1+\frac{0.03}{1}\right)^{1\cdot 10} \implies A=50(1.03)^{10}\implies A \approx \text{\LARGE 67.20}\)
well, let's check how long till you'd have $100 first
\(~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\dotfill & \$100\\ P=\textit{original amount deposited}\dotfill &\$50\\ r=rate\to 3\%\to \frac{3}{100}\dotfill &0.03\\ n= \begin{array}{llll} \textit{times it compounds per \underline{month}} \end{array}\dotfill &1\\ t=\underline{months} \end{cases}\)
\(100=50\left(1+\frac{0.03}{1}\right)^{1\cdot t} \implies 100=50(1.03)^t\implies \cfrac{100}{50}=1.03^t \\\\\\ 2=1.03^t\implies \log(2)=\log(1.03^t)\implies \log(2)=t\log(1.03) \\\\\\ \stackrel{\textit{about 23 months and 13 days}}{\cfrac{\log(2)}{\log(1.03)}=t\implies \text{\LARGE 23.45}\approx t}\)
an old modem can take anywhere from 0 to 30 seconds to establish a connection, with all times between 0 and 30 being equally likely. a. what is the probability that if you use this modem you will have to wait more than 15 seconds to connect? b. given that you have already waited 10 seconds, what is the probability of having to wait at least 10 more seconds?
The probability to wait more than 15 seconds to connect is 50% and the probability to wait at least 10 more seconds after waiting 10 seconds is 33.33%.
How to calculate the probability?x = old modem establish connection = [0, 30]
Probability density function or PDF is
f(x) = \(\frac{1}{b-a}\); 0 ≤ x ≤ 30
Probability to wait more than 15 seconds to connect is
f(X>5) = \(\int\limits^{30}_{15} {f(x)} \, dx\)
= \(\int\limits^{30}_{15} {\frac{1}{b-a}} \, dx\)
= \(\frac{1}{30-0} \, [x]^{30}_{15}\)
= \(\frac{30-15}{30}\)
= 0.5 or 50%
Probability if already waited 10 seconds and having to wait at least 10 more seconds is equal to wait at least 20 seconds from start. So,
f(X>5) = \(\int\limits^{30}_{20} {f(x)} \, dx\)
= \(\int\limits^{30}_{20} {\frac{1}{b-a}} \, dx\)
= \(\frac{1}{30-0} \, [x]^{30}_{20}\)
= \(\frac{30-20}{30}\)
= 0.3333 or 33.33%
Thus, the 50% probability to wait more than 15 seconds to connect and 33.33% probability to wait at least 20 seconds to connect.
Learn more about probability here:
brainly.com/question/29487191
#SPJ4
Philip used a triangular prism as part of his science project. The diagram shows some
dimensions of the prism.
10 cm
15 cm
6 cm
What is the total surface area of the prism in square centimeters?
A 408 cm
B
360 cm
с
456 cm?
D
366 cm
Answer:
the total is going to be number a
Answer:
408cm
Step-by-step explanation:
i'm just built different
Type the expression that results from the following series of steps:
Start with
y
, subtract 7, divide by 3, then add 6.
Triangle ABC is transformed to triangle A′B′C′, as shown below:
A coordinate grid is shown from negative 4 to 0 to 4 on both x- and y-axes. A triangle ABC has A at ordered pair negative 1, 3, B at ordered pair 0, 1, C at ordered pair negative 3, 0. A triangle A prime B prime C prime has A prime at ordered pair negative 1, negative 3, B prime at ordered pair 0, negative 1, C prime at ordered pair negative 3, 0.
Which equation shows the correct relationship between the measures of the angles of the two triangles?
The measure of angle CAB = The measure of angle C prime B prime A prime
The measure of angle BCA = The measure of angle A prime B prime C
The measure of angle CAB = The measure of angle C prime A prime B prime
The measure of angle BCA = The measure of angle C prime A prime B prime low
Answer:
The measure of angle BCA = The measure of angle A prime B prime C
The quotient of 45% -31. - 15) and a polynomial is (-3). What is the pokyrıcaiak
A
Ox5% -6% -30% * 944 45
0-5
O % 45
O % * 5% 46% - 30% * 944 45
Answer:
A
Step-by-step explanation:
Find the slope of the curve at the indicated point.
y = x^2 + 5x +4, x = -1
o m = 3
o m=7
o m = -4
o m = -2
`m = 3` is the slope of the curve at the indicated point. Hence, the correct option is `o m = 3`.
To find the slope of the curve at the indicated point, given
`y = x^2 + 5x +4, x = -1`,
we will use the first principle of differentiation.
The slope of the curve can be obtained by finding the derivative of the given equation.
First, we differentiate the function with respect to `x` using the first principle of differentiation.
This is given as:
`(dy)/(dx) = [f(x+h) - f(x)]/h`
Let
`f(x) = x^2 + 5x + 4`.
Then
`f(x + h) = (x + h)^2 + 5(x + h) + 4
= x^2 + 2hx + h^2 + 5x + 5h + 4`
Substituting the values in the formula:
`(dy)/(dx) = lim (h→0) [f(x+h) - f(x)]/h
= lim (h→0) [(x^2 + 2hx + h^2 + 5x + 5h + 4) - (x^2 + 5x + 4)]/h` `
= lim (h→0) [2hx + h^2 + 5h]/h
= lim (h→0) [2x + h + 5]`
Thus, the slope of the curve at the given point is:
`m = (dy)/(dx)
= 2x + 5
= 2(-1) + 5
= 3`.
Therefore, `m = 3` is the slope of the curve at the indicated point. Hence, the correct option is `o m = 3`.
To know more about slope visit:
https://brainly.com/question/3605446
#SPJ11
Problems 413 8.37 Inside a right circular cylinder, ,- 800μ while the exterior is free space. Given that B, -,(22a, +45a,) Wb/m², determine B, just outside the cylinder.
The problem states:
Inside a right circular cylinder, ,- 800μ while the exterior is free space. Given that B, -,(22a, +45a,) Wb/m2, determine B, just outside the cylinder.
Since the inside of the cylinder has permittivity ,- 800μ and the outside is free space with ,0 = 8.85*10^-12 F/m, by Ampere's Law and Gauss's Law we know that:
B inside cylinder = (22a, +45a,) Wb/m2
B outside cylinder = k*B inside cylinder
Where k = ,0 / ,- = 8.85*10^-12 / 800*10^-6 = 0.011
Therefore,
B just outside the cylinder = (0.011)*(22a, +45a,)
= (22a, +45a,) * 0.242 Wb/m2
So the answer is:
B just outside the cylinder = (22a, +45a,) * 0.242 Wb/m2
pls give the steps and the reasons
Answer:
m<ADB = m<DBC
because they're alternate interior angles.
m<ABD = m<BDC
because they're alternate interior angles.
DC = AB, opposite sides.
AD = BC, opposite sides.
m<ADB = m<ABD, adjacent angles.
m<BDC = m<DBC, adjacent angles.
I need help with this
Answer:
A) The Addition Property of Equality
Step-by-step explanation:
This is the Addition Property of Equality because you are adding \(\frac{3}{4}\) to both sides. Hope this helped :D
Evaluate the integral ∫30∫3ysin(x2) dxdy by reversing the order of integration. With order reversed, ∫ba∫dcsin(x2) dydx, where a= , b= , c= , and d= .
Therefore, the order-reversed integral is:
∫ba∫dcsin(x^2) dydx, where a= 0, b= 3, c= √(3y), and d= √(9y).
We have:
∫30∫3ysin(x^2) dxdy
To reverse the order of integration, we need to express the limits of integration as inequalities of x and y:
3y ≤ x^2 ≤ 9y
√(3y) ≤ x ≤ √(9y)
0 ≤ y ≤ 1
So, we have:
∫30∫√(9y)√(3y)sin(x^2) dxdy
Integrating with respect to x first, we get:
∫√(9y)√(3y) [-cos(x^2)/2] |_0^(√(3y)) dy
= ∫30 [-cos(3y)/2 + cos(y)/2] dy
= [-sin(3y)/6 + sin(y)/2] |_0^3
= (-sin(9)/6 + sin(3)/2) - (0 - 0)
= (-sin(9)/6 + sin(3)/2)
Therefore, the order-reversed integral is:
∫ba∫dcsin(x^2) dydx, where a= 0, b= 3, c= √(3y), and d= √(9y).
Note: We can also check the answer by evaluating the original integral and comparing it with the answer obtained by reversing the order of integration.
To know more about integrals refer here:
https://brainly.com/question/18125359
#SPJ11
Suppose X is a continuous random variable with range range(X) = ℝ, whose density fx is proportional to |x|e^(-x^2) (a) Find and plot the density fx. (b) Compute the cumulative distribution function Fx. (c) Compute the probability of X ∈ [1, 3] (approximate to 4-th decimal place). (d) Find the expected value and variance of X.
The density function of the continuous random variable X, with a range of ℝ, is given by fx ∝ |x|e^(-x^2). To find the density function, we need to determine the constant of proportionality. Since the density function must integrate to 1 over the entire range, we can calculate the constant by integrating the density function from negative infinity to infinity and setting it equal to 1. This gives us the normalized density function fx = (2/√π) |x|e^(-x^2). Plotting this density function will show a symmetric, bell-shaped curve centered around 0.
To compute the cumulative distribution function (CDF), Fx, we integrate the density function fx from negative infinity to x. Integrating fx = (2/√π) |x|e^(-x^2) with respect to x gives Fx = (1/√π) (x^2/2 + 1/2) for x ≥ 0 and Fx = (1/√π) (-x^2/2 + 1/2) for x < 0. The CDF Fx takes on different forms depending on the sign of x.
To compute the probability of X ∈ [1, 3], we evaluate Fx at the upper and lower bounds and take the difference: P(1 ≤ X ≤ 3) = Fx(3) - Fx(1). Substituting the values, we can approximate this probability to the desired decimal place.
The expected value, or mean, of a continuous random variable can be found by integrating x times the density function fx from negative infinity to infinity. In this case, the expected value of X is 0 since the density function is symmetric. The variance of X can be calculated by integrating (x - E[X])^2 times the density function fx. Since the expected value is 0, the variance simplifies to the second moment, which can be evaluated using integration.
Learn more about random variable here:
brainly.com/question/29077286
#SPJ11
Select the correct answer. Given that a function, g, has a domain of -20 ≤ x ≤ 5 and a range of -5 ≤ g(x) ≤ 45 and that g(0) = -2 and g(-9) = 6, select the statement that could be true for g. A. g(-13) = 20 B. g(-4) = -11 C. g(0) = 2 D. g(7) = -1
Answer: 5, 4, ,6 6,4 2, 2
Step-by-step explanation:
Ting a ring + Ring a ting = 5,4,6,6,4,2,2
Give brainly if helps
Me pueden ayudar? :)
.Answer:
Step-by-step explanation:
find 9th term for 2,5,8,11
Answer: 26
Step-by-step explanation:
2+3=5
5+3=8
8+3=11
11+3=14
14+3=17
17+3=20
20+3=23
23+3=26